Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation

نویسنده

  • Md. Azharul Islam
چکیده

Mesoporous activated carbon (AC) was prepared via sodium hydroxide (NaOH) activation of hydrochar from the hydrothermal carbonization (HTC) of palm date seed (PDS). The textural, morphological, and chemical properties of the produced hydrochar AC were investigated. NaOH activation enhanced the porosity and surface functionality of the hydrochar. Batch equilibration methods were performed to explore the process parameters that affected the adsorption of the prepared AC on methylene blue (MB), including initial concentration, contact time, solution pH and temperature. The Freundlich isotherm model better depicted the equilibrium data compared with the Langmuir isotherm model. Temperature was found to negatively affect the adsorption capacity of the prepared AC, which exhibited 612.1, 464.3 and 410.0 mg/g maximum MB adsorption capacities at 30, 40 and 50 C, respectively. The pseudo-second order kinetic model best described the kinetic data. HTC and NaOH activation was proven to be an effective method in preparing highly porous AC from PDS, with good potential for cationic dye removal from liquid phase. 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conventional steam activation for conversion of oil palm kernel shell biomass into activated carbon via biochar product

Conventional steam activation pyrolysis of waste materials such as oil palm kernel shell for production of biochar was investigated using central composite design. Conventional steam activation was carried out via an initial carbonization of oil palm kernel shell to obtain biochar and thereafter steam activation of the biochar using the conventional heating to produce activated carbon. Addition...

متن کامل

Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell

Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40-50 nm size, less graphitic, mesoporous Na...

متن کامل

Production of Activated Carbon from Cellulose Wastes

Cellulose wastes of a wood and paper factory were used to produce activated carbon. Several chemical agents under various conditions were used for production of activated carbon and hence their adsorption properties have been evaluated. In addition the effect of process parameters such as raw material, chemical agent concentration, impregnation ratio, carbonization temperature, carbonization ti...

متن کامل

New Activated Carbon from Persian Mesquite Grain as an Excellent Adsorbent

This paper presents a systematic study of the surface chemistry, porous texture and adsorptive characteristics of prepared new activated carbon using Persian mesquite grain. Several techniques and methodologies such as, proximate analysis, N2 adsorption–desorption isotherms, scanning electron microscope (SEM), Fourier transform infrared spectroscopy(FT-IR), X-ray Diffraction (XRD), X-ray photoe...

متن کامل

Preparation and Characterization of Activated Carbon derived from olive stone as adsorbent for Congo Red

Carbon activated powdered was prepared from activated carbon derived from olive stone. Then byusing the surface methodology, many parameters such as pH, furnace temperature (T), acid ratio,time of activation that affect on the qualities prepared activated carbon produced and its efficiencywere investigated. In addition, the adsorption of Congo Red onto the activated olive stone carbonactive was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015